CHROM. 16,965

QUANTITATIVE ANALYSIS OF HYDROCARBONS IN GASOLINES BY CAPILLARY GAS-LIQUID CHROMATOGRAPHY

I. ISOTHERMAL ANALYSIS

E. MATISOVÁ* and J. KRUPČÍK

Department of Analytical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Jánska 1, 812 37 Bratislava (Czechoslovakia)

P. ČELLÁR

Slovnaft AV VVZ, Vlčie hrdlo, 824 12 Bratislava (Czechoslovakia)

and

J. GARAJ

Department of Analytical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Jánska I, 812 37 Bratislava (Czechoslovakia) (Perceived June 13th 1984)

(Received June 13th, 1984)

SUMMARY

Quantitative analysis of 238 constituents of the gasoline fraction of crude oil (paraffins, branched paraffins, aromatics and naphthenes) on squalane and structure group analysis has been performed by high-resolution capillary gas chromatography under isothermal conditions. The "area per cent technique" (area evaluated by peak height, h, times width at half-height, $w_{1/2}$, by $t_R \times h$ and by digital integration methods) and "the modified standard addition method" were used. The aromatic hydrocarbon content determined on a polar stationary phase, 1,2,3-tris(cyanoethoxy) propane, was in good agreement with the results on squalane as well as with those determined by liquid chromatography.

INTRODUCTION

High-resolution capillary gas chromatography (HRCGC) is the most generally useful method for the analysis of complex hydrocarbon mixtures in gasolines with the ultimate aim of complete component analysis. But even the best columns cannot complete resolve such mixtures comprising theoretically about 600 compounds which on squalane should be eluted before n-decane —paraffins, naphthenes and aromatics without olefins, as in the gasoline fraction produced by distillation of crude oil one would not expect to find an olefinic fraction.

Squalane capillary columns were among the first to be used in the analysis of gasolines^{1,2}. On squalane, hydrocarbons are eluted almost in order of their boiling points. As the resolution of hydrocarbons on such columns is very high, more data

on the retention of hydrocarbons in the gasoline range have been published for squalane than for any other liquid phase³⁻⁹. Sanders and Maynard³ observed 240 compounds in gasolines; up to n-C₁₀ there were 207 compounds, 129 of which were paraffins, naphthenes and aromatics. Whittemore¹⁰ reported the analysis of a gasoline sample for which a total of 378 compounds were separated, leaving only 17 unclassified. Up to n-C₁₀, 257 compounds (including olefins) were eluted, 155 being paraffins, naphthenes and aromatics.

Other liquid phases are also useful in capillary analysis, *e.g.*, silicone oils¹¹. Because they have much higher temperature limits than squalane, they are especially useful in shortening analysis times by use of higher temperatures. Recently Johansen *et al.*¹² described the analysis of a gasoline sample which revealed 268 peaks; up to $n-C_{10}$, 172 peaks were observed, 20 of which represent olefins and 68 were unclassified.

Since gasoline is expected to contain many more compounds than has so far been identified, the aim of this work was to elucidate further the composition of the gasoline fraction of crude oil. This paper describes the use of HRCGC for the structural group analysis of hydrocarbons in gasoline by first achieving as complete a separation as possible on squalane, and then carrying out the identification on the basis of retention data and gas chromatography-mass spectrometry (GC-MS) under isothermal conditions¹³. Problems connected with generally acknowledged methods of quantitative analysis of gasolines are discussed.

EXPERIMENTAL

Measurements were performed on a Carlo Erba Model 2350 gas chromatograph equipped with a flame ionization detector, a stream splitter and on squalane in a glass capillary column (210 m \times 0.3 mm I.D.)¹⁴ with hydrogen as carrier gas at 58°C, and in a metal capillary column (50 m \times 0.25 mm I.D.) with TCEP [1,2,3-tris(cyanoethoxy)propane]¹⁵ and nitrogen at 80°C.

Digital integration measurements were performed on a Hewlett-Packard 58 80 A gas chromatograph with integrator C R1 A and on squalane in a metal capillary column (100 m \times 0.25 mm I.D.) under isothermal conditions as given above.

Two samples of gasolines were analysed: 1, a gasoline fraction of crude oil; 2, a gasoline fraction enriched with higher boiling hydrocarbons. The samples were injected with a $1-\mu$ l Hamilton syringe.

Peak areas were measured as:

(1) peak height, h, times the width at half-height, $w_{1/2}$, as determined with a calibrated magnifying glass having a read-out precision of ± 0.05 mm;

(2) retention time, t_R in mm, times peak height, h;

(3) degital integration response.

RESULTS AND DISCUSSION

The most common method used in the analysis of hydrocarbon mixtures using flame ionization detection (FID) has been the simplest "area per cent technique"¹⁶. The accuracy is higher the more similar are the hydrocarbons in the mixture and the narrower their boiling point range. A disadvantage of this method is the necessity to elute all mixture components. Moreover, at the given limit of FID, compounds in low concentrations are not taken into consideration, so that the overall sum of the peak areas may be loaded with a large systematic error. To determine the correct contents of compounds we have introduced "the modified standard addition method". As the relative response per gram of hydrocarbons, RWR, is nearly constant for the whole series^{3,17-20}, both methods can be used for the calculation of weight per cent of any hydrocarbon in gasoline.

Quantitative analysis of hydrocarbons on squalane

Isothermal conditions were chosen in order to utilize published data on the characterization of the individual mixture constituents. The temperature of 58°C was selected by optimization¹³ to give the best compromise between analysis time and number of peaks resolved.

"Area per cent technique". Two samples of gasolines were evaluated. In Table I are given the results of quantitative analysis of all constituents of sample 1 as the

TABLE I

RESULTS OF QUALITATIVE ANALYSIS OF	GASOLINE DETERMINED ON SQUALANE BY
"AREA PER CENT TECHNIQUE"	

Peak	Component	Sample 1	Sample 1 (%)		
No.		$h \times w_{1/2}$	$t_R \times h$	$t_R \times h$	Digital integr.
2	2-Methylbutane	0.285	0.380	0.070	0.033
3	n-Pentane	1.060	1.239	0.342	0.186
4	2,2-Dimethylbutane	0.127	0.135	0.019	
5	Cyclopentane	0.748	0.832	0.177	0.160
6	2,3-Dimethylbutane	0.558	0.622	0.138	0.100
7	2-Methylpentane	4.109	4.596	1.325	0.961
8	3-Methylpentane	3.234	3.728	1.017	0.706
9	n-Hexane	7.932	8.416	3.240	2.172
10	2,2-Dimethylpentane	0.114	0.129	0.022	0.012
11	Methylcyclopentane	3.259	4.168	2.044	0.704
12	2,4-Dimethylpentane	0.304	0.390	0.181	0.704
13	Benzene	0.357	0.415	0.173	0.103
14	3,3-Dimethylpentane	0.079	0.106	0.025	-
15	Cyclohexane	1.712	1.941	1.380	1.210
16	2-Methylhexane	2.552	2.925	1.736	1.476
17	2,3-Dimethylpentane	1.062	1.239	1.701	0.588
18	1,1-Dimethylcyclopentane	0.143	0.168	0.103	0.082
19	3-Methylhexane	3.662	4.336	2.550	2.107
20	1(cis),3-Dimethylcyclopentane	0.776	0.942	0.789	0.685
21	3-Ethylpentane	0.349	0.428	0.208	0.173
22	1(trans), 3-Dimethylcyclopentane	0.697	0.859	0.747	0.697
23	1(trans), 2-Dimethylcyclopentane	1.788	1.854	1.660	1.506
24	n-Heptane	6.452	7.585	6.283	5.444
25	2.2-Dimethylhexane	0.062	0.067	0.031	
26	1(cis).2-Dimethylcyclopentane	0.268	0.293	0.299	0.277
27	1,1,3-Trimethylcyclopentane	0.190	0.299	0.207	0.180

(Continued on p. 154)

TABLE I (continued)

Peak	Component	Sample 1	(%)	Sample 2 (%)	
No.		$h \times w_{1/2}$	$t_R \times h$	$t_R \times h$	Digital integr.
28	Methylcyclohexane	3.562	3.707	4.115	4 319
29	2,5-Dimethylhexane	0.371	0.419	0.389	4.517
30	2,4-Dimethylhexane	0.510	0.545	0.428	0.424
31	Ethylcyclopentane	0.976	1.064	1.317	1.285
32	1(trans),2(cis),4-Trimethylcyclopentane	0.634	0.619	0.675	0.651
33	3,3-Dimethylhexane	0.114	0.113	0.070	-
34	Toluene	1.522	1.510	1.563	1.156
35	1(trans),2(cis),3-Trimethylcyclopentane	0.774	0.781	0.931	0.992
36	2,3,4-Trimethylpentane	0.076	0.079	0.110	0.103
37	2,3-Dimethylhexane	0.482	0.517	0.362	0.385
38	2-Methyl-3-ethylpentane	0.254	0.274	0.250	0.254
39	1,1,2-Trimethylcyclopentane +	2 /10	2 1 4 2	2 7/2	3 185
40	2-methylheptane (1:25)	5.419	5.142	3.243	3.403
41	4-Methylheptane	1.113	1.091	0.951	1.031
42	3.4-Dimethylhexane	0.279	0.229	0.162	0.146
43	3-Methylheptane	2.830	2.441	1.834	2.403
44	3-Methyl-3-ethylpentane	0.048	0.044	0.041	-
45	1(cis).2(trans).4-Trimethylcyclopentane	0.048	0.044	0.042	
46	Naphthene	0.063	0.059	0.042	0.011
47	1(cis).2(trans).3-Trimethylcyclopentane	0.199	0.210	0.234	0.263
48	1(cis).3-Dimethylcyclohexane	0.976	0.873	1.194	1.000
49	1(trans).4-Dimethylcyclohexane	0.488	0.438	0.732	1.880
50	1.1-Dimethylcyclohexane	0.558	0.507	0.718	0.891
51	1-Methyl-2(trans)-ethylcyclopentane	0.384	0.353	0.501	
52	1-Methyl-3(cis)-ethylcyclopentane	0.816	0.790	1.327	2.049
53	1-Methyl-1-ethylcyclopentane	0.067	0.066	0.164	0.166
54	<i>n</i> -Octane	6.388	5.242	6.140	7.293
55	1(cis).2(cis).3-Trimethylcyclopentane +				
	1(<i>trans</i>).2-dimethylcyclohexane	0.733	0.650	1.055	1.335
56	1(cis), 4-Dimethylcyclohexane +				
	1(trans).3-dimethylcyclohexane	0.232	0.173	0.238	0.339
57	Branched paraffin	0.008	0.007	0.006	
58	Branched paraffin	0.026	0.023	0.019	_
59	2.3.5-Trimethylhexane	0.119	0.106	0.098	0.028
60	Isopropylcyclopentane	0.138	0.134	0.203	0.116
61	Branched paraffin	0.005	0.005	0.014	_
62	Branched paraffin	0.010	0.009	*	_
63	2.2-Dimethylhentane	0.057	0.052	0.027	_
64	Nanhthene	0.041	0.038	0.047	0.035
65	2 4-Dimethylhentane	0.287	0.282	0.330	0.393
66	1-Methyl-2(cis)-ethylcyclopentane	0.113	0.108	0.180	0.211
67	Branched paraffin	*	*	*	_
68	2.2.3-Trimethylhexane	0.057	0.055	0.042	
69	Naphthene	0.075	0.071	0.064	
70	2.6-Dimethylheptane	0 974	0.921	1 403	1.784
71	Nanhthene	0.030	0.026	0.014	_
72	1(cis) 2-Dimethylcyclohexane	0.000	0.020	0.017	
73	<i>n</i> -Propylevelopentane	0.558	0.459	0.898	1.200
74	2.5-Dimethylhentane	0.557	0.511	0 535	0.840
, 7	-, monymoreme	0.001	0.511	0.000	0.040

CAPILLARY GLC OF HYDROCARBONS. I.

TABLE I (continued)

Peak No.	Component	Sample 1	(%)	Sample 2 (%)	
		$h \times w_{1/2}$	$t_{\mathbf{R}} \times h$	$t_{\rm R} \times h$	Digital integr.
75	3,5-Dimethylheptane	0.172	0.159	0 164	
76	Ethylbenzene	0.736	0.684	1 131	
77	Ethylcyclohexane	0.943	0.880	1 562	2.980
78	3,3-Dimethylheptane	0.052	0.049	0.031	-
79	Branched paraffin	0.011	0.011	0.008	
80	Napthene	0.113	0.106	0.000	
81	Naphthene	0.975	0.921	1 317	1.832
82	1,1,3-Trimethylcyclohexane	0.184	0.164	0.304	
83	Branched paraffin	0.118	0.103	0.129	1.516
84	1(cis),3(cis),5-Trimethylcyclohexane	0.190	0.167	0.125	
85	Branched paraffin	0.157	0.139	0.293	0.526
86	Branched paraffin	0.026	0.023	0.033	
87	Cycloalkane + p -xylene (1:1)	0.766	0.497	0.725	0.575
88	Branched paraffin	0.019	0.018	0.101	0.373
89	<i>m</i> -Xylene	1,103	1.045	1 321	1 202
<u> </u>	Branched paraffin	0.006	0.006	0.009	1.275
01	Branched paraffin	0.476	0.462	0.694	0.883
07	Branched paraffin	0.010	0.010	0.005	-
74 02	Branched paraffin	0.250	0 221	0.213	0.078
93 04	Manhthene	0.193	0 171	0.303	0.048
94 05	Ivapinnenc	0.100	0.090	0.198	0.225
93 04	1(trans),2(tis),4-11methylovelohexane +	0.100	0.090	0.170	
90	1(trans),2(trans),4-11methyleyclohexane	0.207	0.188	0.310	0.325
~ ~	((runs), 5((runs), 5-trimethyleyelonexate	0.820	0.752	0.983	1 180
97	4-Methyloctane	0.013	0.848	1 134	1 310
98	2-Methylociane	0.073	0.067	0.122	
99	Naphthene	0.073	0.061	0 104	0.025
00	Naphinene 2 Estadbantana	0.254	0.216	0.208	0.245
01	S-Ethymeptane	0.642	0.558	0.905	
02	2 Mathulastone	1 427	1 244	1.702	3.355
03	3-Meinylociale	0.087	0.077	0.194	_
04	Naphulenc Dranahad paraffin	0.016	0.014	0.020	_
0.5	Nonhthene	0.044	0.039	0.079	0.018
00	Naphthena	0.012	0.011	0.020	_
07	Naphthene	0.012			
00	Nanhthene	0.079	0.040	0.071	_
10	Naphthene	0.049	0.041	0.072	-
10	Naphthene 1(an and 2(air) 2 Trimethylouolohovane	0.079	0.068	0.115	0.026
12	1 1.2 Trimethylayolohovana +	0.073	0.000	0.110	
14	3 3-diethylpentane (5:1)	0.283	0.248	0.561	0.669
11	1(cis) 2(trans) 4-Trimethylcyclohexane	0.165	0.146	0.320	0.474
12	Branched nataffin	0.096	0.085	0.193	0.4/4
114	1(cig) 2(cig) 4. Trimethylovclohexane +	.	0.100	0.070	0 204
115	1(cis) 3(cis) Astrimethylevelohexane	0.144	0.128	0.270	0.290
14	Nanhthene	0.022	0.020	0.033	-
10	Nanhthene	0.095	0.080	0.156	0.252
L17 (10	Nonhthene	0.067	0.056	0.112	0.233
110	Maphiliche Mathulathulauolahevane	0.299	0.257	0.499	0.568
112	Meinylethylcyclohexane				

(Continued on p. 156)

TABLE I (continued)

Peak	Component	Sample 1	(%)	Sample 2 (%)	
NO.		$h \times w_{1/2}$	t _R × h	$t_R \times h$	Digital integr.
120	Naphthene	0.067	0.049	0.103	_
121	Naphthene	0.055	0.041	0.080	-
122	Isopropylbenzene	0.248	0.208	0.508	0 671
123	Naphthene	0.213	0.179	0.427	0.071
124	Naphthene		_	0.023	-
125	Naphthene	0.053	0.043	0.119	_
126	n-Nonane	3.695	2.888	4.837	7.461
127	Naphthene	0.076	0.070	0.146	
128	Naphthene		-	0.009	_
129	Naphthene + branched paraffin (1:1)		_	0.015	-
130	Naphthene		-	0.015	—
131	Naphthene	_	-	0.066	-
132	Naphthene	0.055	0.045	0.094	-
133	Naphthene	0.033	0.027	0.054	-
134	Branched paraffin	0.041	0.037	0.066	
135	Branched paraffin	0.005	0.005	0.032	
136	Naphthene	0.160	0.143	0.354	0.361
137	Naphthene	0.010	0.009	0.022	-
138	Naphthene	0.003	0.050	0.081	_
139	Naphthene	0.085	0.052	0.094	_
140	Branched paraffin	0.059	0.052	0.120	_
141	Naphthene	0.247	0.186	0 503	0.522
142	Naphthene	0.095	0.072	0.502	0.332
143	Naphthene	0.017	0.014	0.027	-
144	Naphthene	0.046	0.025	0.010	
145	Branched paraffin	0.104	0.073	0.162	0.037
146	Naphthene	0.030	0.025	0.003	
147	Naphthene	0.012	0.010	0.027	-
148	Naphthene	0.030	0.025	0.076	-
149	Branched paraffin	0.036	0.030	0.076	
150	Naphthene	0.131	0.112	0.296	0.593
151	Naphthene	0.155	0.133	0.318	
152	Branched paraffin	0.151	0.103	0.233	0.048
153	n-Propylbenzene	0.339	0.307	0.814	0.674
154	Naphthene	0.006	0.005	0.004	-
155	Branched paraffin	0.100	0.042	0.213	-
156	Branched paraffin	0.100	0.042	0.215	_
157	Naphthene	0.013	0.011	0.011	-
158	C ₉ naphthene	0.359	0.299	0.727	0.460
159	C ₉ naphthene	0.271	0.202	0.555	0.400
160	Naphthene	0.044	0.039	0.087	-
161	2,6-Dimethyloctane	0.716	0.630	1.286	1.700
162	Branched paraffin	0.019	0.017	0.004	_
163	Branched paraffin	0.033	0.028	0.093	_
164	Branched paraffin	0.065	0.045	0.124	-
165	Branched paraffin	0.039	0.034	0.063	0.015
166	2,5-Dimethyloctane	0.339	0.261	0.456	0.695
167	1-Methyl-3-ethylbenzene	0.523	0.466	0.762	0.895
168	1-Methyl-4-ethylbenzene	0.232	0.207	0.324	
169	Naphthene	0.081	0.071	0.147	0.675

CAPILLARY GLC OF HYDROCARBONS. I.

TABLE I (continued)

Peak	Component	Sample 1	Sample 1 (%)		Sample 2 (%)	
NO.		$h \times w_{1/2}$	$t_R \times h$	$t_{R} \times h$	Digital integr.	
170	Naphthene	0.047	0.042	0.084	<u> </u>	
171	C_{10} branched paraffin	0.032	0.030	0.058		
172	Branched paraffin	0.038	0.036	0.041	-	
173	Branched paraffin	0.015	0.012	0.004	-	
174	C ₁₀ branched paraffin	0.045	0.037	0.071	0.020	
175	Naphthene	0.038	0.031	0.046	-	
176	Branched paraffin	0.030	0.025	0.051	0.013	
177	Branched paraffin	0.012	0.010	0.021	-	
178	Branched paraffin	—	_	0.013	-	
179	Naphthene		-	0.009		
180	Naphthene	0.020	0.026	0.070	0.021	
181	Naphthene	0.029	0.020	0.070	0.021	
182	Branched paraffin	0.056	0.045	0.150	0.143	
183	Branched paraffin	· · · · · · · · · · · · · · · · · · ·	—	0.004		
184	Branched paraffin	-	_	0.003	-	
185	1-Methyl-2-ethylbenzene	0.391	0.308	0.713	1.443	
186	Branched paraffin	0.103	0.086	0.167	-	
187	Branched paraffin	-		0.023	_	
188	Branched paraffin	0.008	0.007	0.014	-	
189	Naphthene	0.024	0.020	0.092	0.070	
190	Naphthene	0.024	0.020	0.065	0.070	
191	1,3,5-Trimethylbenzene	0.169	0.158	0.192	0.517	
192	Branched paraffin	-	-	0.005	0.517	
193	Branched paraffin	0.086	0.083	0.199		
194	Branched paraffin	*	*	*	-	
195	Naphthene	0.190	0.169	0.298	1 451	
196	4-Methylnonane	0.357	0.312	0.756	1.401	
197	tertButylbenzene	0.008	0.007	0.029	-	
198	Naphthene	0.041	0.036	0.097	0.057	
199	Naphthene	0.017	0.015	0.030	_	
200	2-Methylnonane	0.330	0.271	0.670	1.086	
201	Naphthene	0.052	0.044	0.130	_	
202	C ₁₀ naphthene	0.035	0.030	0.076		
203	Naphthene	0.009	0.007	0.010		
204	Naphthene	0.010	0.011			
205	Naphthene	0.018	0.011	0.062	-	
206	Naphthene	_	_	0.005	_	
207	3-Methylnonane	0.244	0.215	0.539	0.683	
208	Naphthene	0.027	0.023	0.074	_	
209	Naphthene	0.035	0.031	0.090	_	
210	1,2,4-Trimethylbenzene	0.659	0.580	0.807	0.754	
211	Branched paraffin	_		0.038	-	
212	Naphthene	0.018	0.016	0.049		
213	Branched paraffin	0.019	0.016	0.049	_	
214	secButylbenzene	0.103	0.065	0.143	0.156	
215	Branched paraffin	~		0.017		
216	Naphthene	0.078	0.058	0.185		
217	Naphthene	0.111	0.083	0.247	0.505	

(Continued on p. 158)

TABLE I (continued)

Peak Com No.	Component	Sample 1 (%)		Sample 2 (%)	
		$h \times w_{1/2}$	$t_{\mathbf{R}} \times h$	$t_{R} \times h$	Digital integr.
218	Naphthene	0.067	0.050	0.137	0.189
219	Branched paraffin	_	-	0.017	-
220	Naphthene	0.048	0.034	0.104	0.016
221	Branched paraffin	*	*	*	_
222	2-Naphthenes	0.177	0.104	0.223	0.383
223	Branched paraffin	_	-	0.024	_
224	Naphthene	0.044	0.036	0.061	-
225	Naphthene	0.022	0.018	0.049	_
226	Branched paraffin	0.033	0.027	0.043	_
227	Branched paraffin	0.033	0.027	0.025	_
228	Naphthene	0.033	0.027	0.106	-
229	Naphthene	0.055	0.046	0.132	0.059
230	Naphthene	0.044	0.037	0.127	0.038
231	Branched paraffin	_	-	0.051	-
232	Branched paraffin	-	-	0.045	-
233	Naphthene	-	_	*	
234	1,2,3-Trimethylbenzene	0.218	0.211	0.358	
235	Branched paraffin	0.060	0.058	0.033	
236	1-Methyl-4-isopropylbenzene	0.048	0.039	0.119	
237	Branched paraffin	-	-	0.027	
238	n-Decane	1.110	0.943	2.175	3.398

* Less than 0.001%.

contents of hydrocarbons estimated by the $h \times w_{1/2}$ and $t_R \times h$ methods of peak area evaluation. Comparing the weight per cents of individual constituents determined by both methods it is seen that the per cent of low boiling compounds determined by the $h \times w_{1/2}$ method is lower and that of high boiling compounds higher than those determined by the $t_R \times h$ method. This is probably connected with the precision of measurement of the peak widths. The results of the group analysis of hydrocarbons of gasoline sample 1 calculated as the sum of the contents of individual hydrocarbons in corresponding structural groups determined by the above methods are listed in Table II. The differences between the two methods are in the range of 0.33-1.92% for each hydrocarbon group.

To avoid errors in peak width measurements, the contents of compounds in gasoline sample 2 enriched in aromatics and naphthenes were evaluated by the $t_R \times h$ and digital integration methods. As an example of the separation power of the squalane column used, a chromatogram of the separation of the hydrocarbon constituents of gasoline sample 2 is given in Fig. 1. The results of the quantitative analysis by the $t_R \times h$ method on a high-resolution glass capillary column [210 m; over 500,000 theoretical plates (TPs)] and by digital integration after separation on a metal capillary column (100 m; 200,000 TPs) are given in Table I. From these results and the preceding group analysis it is evident that for sufficient component separation it is necessary to use a capillary column having as high resolution as possible. With columns of lower efficiency it is often the case that several peaks overlap, which

TABLE II

GROUP ANALYSIS OF GASOLINE SAMPLE 1 DETERMINED BY $h \times w_{1/2}$ AND $t_R \times h$ METHODS

Weight per cent (%)
$h \times w_{1/2}$	$t_R \times h$
26.64	26.31
35.87	37.79
7.68	7.02
29.79	28.84
	Weight per cent ($h \times w_{1/2}$ 26.64 35.87 7.68 29.79

complicates qualitative as well as quantitative analysis. From the results in Table I it is also seen that many constituents present in very low weight per cents could not be evaluated by the integrator and because of this the contents of other components increased, significantly influencing the group analysis (Table III). The differences between the two methods lay in the range of 2.93-4.73% for each hydrocarbon group,

Fig. 1. Chromatogram of the separation of hydrocarbon constituents of gasoline sample 2 on a highresolution squalane glass capillary column at 58°C at a hydrogen pressure of 2.48 atm and different instrument attenuations. Splitting ratio: 1:120.

TABLE III

Compounds	Weight per cent (%)		Weight per cent \times $f(\%)$ - $(t_p \times h)$
	$t_R \times h$	Digital integr.	() K '')
n-Paraffins	23.02	25.95	21.78
Branched paraffins	30.01	26.58	28.39
Aromatics	10.23	14.95	9.67
Naphthenes	36.74	32.01	34.76

GROUP ANALYSIS OF GASOLINE SAMPLE 2 DETERMINED BY $t_R \times h$ AND DIGITAL IN-TEGRATION METHODS

the greatest difference being in the analysis of naphthenes and aromatic hydrocarbons. (Factor f is explained in the next section).

"The modified standard addition method". Unlike "the area per cent technique" where the relative proportions of hydrocarbons calculated from the peak areas correspond directly to their weight per cents, this method allows the determination of components which at the given limit of FID are not measurable or under the given conditions are not eluted from the column. The standard addition method requires precise and reproducible sample injection. In order to circumvent this problem we have modified the standard addition method.

Ethylbenzene was chosen as the standard for addition. Three control analyses were performed (three weights of gasoline sample 2 with the content of the standard added in the range of 0.6-1.1%). The weight per cent of ethylbenzene in gasoline, X', was calculated according to

$$X' = \frac{A_{e}A'_{i} \cdot \%_{\text{st.add.}}}{A_{i}A'_{e} - A_{e}A'_{i}}$$
(1)

where A_e is ethylbenzene peak area in the gasoline sample, A_i = area of neighbouring peak in gasoline sample, A'_e = ethylbenzene peak area upon standard addition, A'_i = area of neighbouring peak in gasoline sample upon standard addition and $\%_{st.add.}$ = weight per cent of standard added.

The results obtained with the modified standard addition technique are given in Table IV. Factor f (Table IV), which designates the proportions of the content

TABLE IV

RESULTS FOR	GASOLINE	SAMPLE 2	OBTAINED	BY THE	STANDARD	ADDITION '	ГЕСН-
NIQUE WITH I	ETHYLBENZ	ENE AS STA	ANDARD				

Gasoline sample	Ethylbenzene	added	X' of	f
(g)	g	%	- ethyloenzene (%)	
0.75325	0.00537	0.71	1.07	0.9461
0.75218	0.00452	0.60	1.10	0.9726
0.75014	0.00810	1.08	1.04	0.9200

Fig. 2. Chromatogram of the separation of aromatics in gasoline sample 2 on TCEP in a metal capillary column at 80°C and a nitrogen pressure of 0.7 atm. Beginning of separation at the instrument attenuation of 1/32. Splitting ratio: 1:400.

TABLE V

RESULTS OF QUANTITATIVE ANALYSIS OF AROMATICS IN GASOLINE SAMPLES 1, 2 DE-TERMINED ON TCEP BY MODIFIED STANDARD ADDITION METHOD AND BY FIA METHOD

Peak	Compound	Weight %		
No.		Sample 1	Sample 2	
1	Benzene	0.264	0.124	
2	Toluene	1.206	1.266	
3	Ethylbenzene	0.625	1.029	
4	p-Xylene	0.526	0.407	
5	<i>m</i> -Xylene	1.281	1.238	
6	Isopropylbenzene	0.176	0.380	
7	n-Propylbenzene	0.327	0.772	
8	o-Xylene + secbutylbenzene	0.569	0.874	
9	1,3- + 1,4-Methylethylbenzene + <i>tert</i> butylbenzene	0.752	0.933	
10	1,3,5-Trimethylbenzene	0.173	0.192	
11	Unidentified	0.043	0.125	
12	1-Methyl-4-isopropylbenzene	0.031	0.098	
13	1-Methyl-2-ethylbenzene	0.286	0.620	
14	Unidentified	0.108	0.219	
15	Unidentified	0.124	0.250	
16	1,2,4-Trimethylbenzene	0.609	0.762	
17	Unidentified	0.039	0.076	
18	Unidentified	0.053	0.191	
19	Unidentified	0.027	0.085	
20	1,2,3-Trimethylbenzene	0.206	0.417	
	Σ Aromatics	7.32	10.05	
	FIA method	6.72	10.00	

determined by the modified method of standard addition and the peak area technique, was calculated according to

$$f = X/X \tag{2}$$

where X represents the weight per cent of ethylbenzene as estimated by the area per cent technique. The sum of the components determined by the area per cent technique multiplied by the mean value of factor f from Table IV is equal to 94.61%, the remaining 5.39% represents the compounds which were not considered in the peak area technique, therefore the content of other compounds was found higher using this technique, cf, results in Table III.

Quantitative analysis of aromatic hydrocarbons on TCEP

The aromatic hydrocarbon content was determined also on the polar stationary phase TCEP where normal, branched paraffins and naphthenes are eluted rapidly. Both gasoline samples were analysed. A chromatogram of the separation of aromatics in sample 2 on TCEP in a metal capillary column at 80°C and with a nitrogen pressure of 0.7 atm is shown in Fig. 2. The component numbering is as in Table V. Comparing Fig. 2 with Fig. 1 for squalane, it is seen that the sum of aromatic hydrocarbons on squalane does not include aromatics eluted after *n*-decane.

TABLE VI

Compound	$Squalane (t_{\mathbf{R}} \times h)$		TCEP (%)	Squalane (digital integr.) (%)
	%	% · f		
Benzene	0.173	0.164	0.124	0.103
Toluene	1.563	1.479	1.266	1.156
Ethylbenzene	1.131	1.070	1.029	2.980
<i>n</i> -Xylene	0.363	0.343	0.407	0.575
<i>m</i> -Xylene	1.321	1.250	1.238	1.293
o-Xvlene	0.905	0.856	0.874	3.355
Isopropylbenzene	0.508	0.481	0.380	0.671
n-Pronylbenzene	0.814	0.770	0.772	0.674
1-Methyl-3-ethylbenzene	0.762	0.721	0.023	0.895
1-Methyl-4-ethylbenzene	0.324	0.307	0.935	0.675
1-Methyl-2-ethylbenzene	0.713	0.675	0.620	1.143
1 3 5-Trimethylbenzene	0.192	0.182	0.192	0.517
tert "Butylbenzene	0.029	0.027	*	
1.2.4.Trimethylbenzene	0.807	0.764	0.762	0.754
rec_Butylbenzene	0.143	0.135	**	0.156
1.2.3.Trimethylbenzene	0.358	0.339	0.417	-
1-Methyl-4-isopropylbenzene	0.119	0.113	0.098	_
Σ Aromatics	10.225	9.674	9.112	14.947

RESULTS OF QUANTITATIVE ANALYSIS OF AROMATICS IN GASOLINE SAMPLE 2 ON SQUALANE AND TCEP

* Eluted with 1,3- and 1,4-methylethylbenzene.

** Eluted with o-xylene.

The content of aromatics on TCEP was calculated using the modified standard addition method with ethylbenzene as the standard. For both gasoline samples the weight per cent of ethylbenzene was determined using eqn. 1 as described for squalane. The weight per cent of other aromatic components was calculated according to

$$X_i = \frac{A_i}{A_e} \cdot X' \tag{3}$$

where X_i is the weight per cent of component i in the gasoline sample, A_i = peak area of component i in gasoline, A_e = peak area of ethylbenzene in gasoline and X'= weight per cent of ethylbenzene in gasoline determined according to eqn. 1. The results of quantitative analysis of individual aromatic hydrocarbons in gasoline samples determined by the modified standard addition method and their total sum analysed also by the FIA method²¹ are in good agreement (Table V).

In Table VI are summarized the results of quantitative analysis of aromatics in sample 2 eluted on squalane up to *n*-decane and on TCEP. There is not only good agreement in the content of aromatics on both stationary phases but it can also be concluded that the resolution of aromatics on the squalane capillary column is sufficient and can be used for their analysis.

REFERENCES

- 1 F. D. Rossini, B. J. Mair and A. J. Streiff, *Hydrocarbons from Petroleum*, API Project 6, Reinhold, New York, 1953.
- 2 D. H. Desty, A. Goldup and W. T. Swanton, in N. Brenner, J. E. Callen and M. D. Weiss (Editors), Gas Chromatography, Academic Press, New York, 1962, pp. 105-138.
- 3 W. N. Sanders and J. B. Maynard, Anal. Chem., 40 (1968) 527.
- 4 N. Dimov, J. Chromatogr., 119 (1976) 109.
- 5 T. S. Lombosi, E. R. Lombosi, I. Bernát, Zs. Sz. Bernát, E. C. Takács and J. M. Takács, J. Chromatogr., 119 (1976) 307.
- 6 E. Bojti, M. Mihók, I. Borbély, J. Bárkai and J. M. Takács, J. Chromatogr., 119 (1976) 321.
- 7 O. E. Schupp, III and J. S. Lewis (Editors), *Gas Chromatographic Data Compilation*, American Society for Testing and Materials, Philadelphia, PA, ASTM D 25 A, 1967.
- 8 O. E. Schupp, III and J. S. Lewis (Editors), Gas Chromatographic Data Compilation, Supplement I, American Society for Testing and Materials, Philadelphia, PA, ASTM AMD 25A S-1, 1971.
- 9 A. Matukuma, in C. L. A. Horbourn and R. Stock (Editors), Gas Chromatography 1968, Institute of Petroleum, London, 1969.
- 10 I. M. Whittemore, in K. H. Altgelt and T. H. Gouw (Editors), Chromatography in Petroleum Analysis, Marcel Dekker, New York, 1979, pp. 50-70.
- 11 A. G. Polgar, J. J. Holst and Sigurd Groennings, Anal. Chem., 34 (1962) 1227.
- 12 N. G. Johansen, L. S. Ettre and R. L. Miller, J. Chromatogr., 256 (1983) 393.
- 13 J. Krupčík and E. Matisová, unpublished results.
- 14 E. Matisová, J. Krupčík, P. Čellár, J. Remeň and M. Révus, 4th Danube Symposium, Bratislava, 1983.
- 15 L. Soják and J. A. Rijks, J. Chromatogr., 119 (1976) 505.
- 16 S. Hála, M. Kuraš and M. Popl, Analysis of Complex Hydrocarbon Mixtures, Part B, Elsevier, Amsterdam, 1981.
- 17 L. Durrett, M. C. Simmons and I. Dvoretzky, Prepr. Div. Petrol. Amer. Chem. Soc., 6 (1961) 63.
- 18 L. S. Ettre, J. Chromatogr., 8 (1962) 525.
- 19 W. A. Dietz, J. Gas Chromatogr., 5 (1967) 68.
- 20 W. G. Jennings, J. Chromatogr. Sci., 13 (1975) 185.
- 21 ASTM Method D 1319-66T, Annual Book of ASTM Standards, Part 23, American Society for Testing and Materials, Philadelphia, PA, 1975; Draft International Standard ISO/DIS 3837.